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Abstract: In recent years the usage of mobile devices and the expansion of their func-
tionality by installing further applications have become very popular. Their frequent
usage causes much faster battery discharging, and thus drastically limits the uptime of
the devices and their applications. Hence, investigating and reducing the power con-
sumption of mobile applications is one of the current, central challenges in software
engineering. In this paper we propose an approach for profiling the power consump-
tion of mobile applications and comparing their consumption for similar services. We
show by example that such differences can be identified for two well-known email
clients. We envision a repository or market place that allows users comparing and
selecting applications based on energy labels and their personal requirements.

1 Introduction

Mobile devices, such as smart phones and tablets, have become very popular within the last
years. Nowadays, we use them regularly and everywhere, checking emails, appointments
or obtaining other content from the Internet. Besides the general usage of mobile devices,
adapting and extending their functionality with small, domain-specific applications (i.e.,
apps) has become a typical scenario. The extensive usage of mobile devices and their low
energy budgets, however, make power consumption of individual apps a major concern.
Often, devices consume so much energy that they run out of it within hours or a day.
Thus, investigating whether the power consumption of mobile devices can be decreased
by developing applications more intelligently or more resource-saving is a major research
challenge in software engineering. This is especially important for mobile applications
that are not only executed during direct user interaction but are running as background
services as well (e.g., to check email or news feed accounts for new incoming messages).

Thus, to increase the uptime of mobile devices, users should be able to base their deci-
sion, which application they want to install, not only on the provided functionality and the
community’s rating (e.g., a five star grading system as used in the Android market Google
Play), but also on an expectation of the application’s power consumption during runtime.
To provide this information, we are working on a methodology that allows the comparison
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of applications providing similar services w.r.t. their power consumption. We intend to
establish a framework, which allows profiling the power consumption of applications and
approximating their long-running power consumption based on this information. Besides
profiled power rates for different services, the way users utilize them and the decision
which services they use how frequently heavily influences the applications’ power con-
sumption (e.g., the decision how often a user checks its emails, will influence an email
client’s communication traffic and thus, its power consumption). Therefore usage profiles
should be used together with the profiled power consumption to approximate applications’
power consumption for different usage scenarios. This approximated power behavior then
be used to provide an alternative app grading system (e.g., a labeling system similar to
existing approaches such as the European Union energy label for electric devices).

In this paper we propose such an energy labeling process for mobile applications. We
profile the power consumption of two different Android email clients and evaluate their
consumption for different use cases. The core contributions of this paper are:

e A process to profile the power consumption of mobile applications for certain use
cases and a methodology to approximate their long-time consumption based on
these measurements and additional usage profiles.

e First power measurement results showing that an application can consume different
amounts of energy for different services and that different applications can consume
different measurable amounts of energy for similar services.

The remainder of this paper is structured as follows. In Section 2 we present our energy
labeling process for mobile applications. In Section 3 our power consumption profiling in-
frastructure is described and we investigate the power consumption of mobile applications
by using an email case study. Section 4 discusses work related to our approach. Finally, in
Section 5 we conclude this paper and give an outlook onto future works.

2 Comparing Power Consumption of Mobile Applications

Traditionally, to compare mobile applications, the only rating criterion is the apps’ popu-
larity within a community (e.g., star rankings as in Google Play). To extend this approach
by power consumption as an additional criterion, we propose a process that allows for the
investigation and approximation of the power consumption of mobile applications. The
overall process consists of five steps and is shown in Figure 1. In the following we elab-
orate the individual steps and discuss how they could be realized if the process would be
implemented for a mobile application market place.

To compare applications providing similar services, a prerequisite is to identify these ser-
vices and to define a service model that expresses how these services are typically intercon-
nected. Thus, during (1) service modeling, general use cases for a domain of applications
are specified (e.g., use cases for email clients such as checking for new mails, reading a
mail, writing a mail). Afterwards, based on these services, abstract test cases are defined.
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Figure 1: Energy label computation process.

They describe paths through the service model (e.g., that an email account has to be se-
lected before an email can be opened) as well as test data for benchmarking (e.g., the name
and login of an email account).! Together, the service model and the abstract test cases
form an abstract benchmark which specifies how to test an application of a certain domain
(e.g., email clients). The technical realization of these test cases for a specific application
under test (AUT) (e.g., which buttons, text fields, etc. have to be used to run these tests
for certain email applications) is not part of the service model. In the context of a market
place providing energy labels, the service modeling would be realized by a benchmark
designer. A benchmark designer has sufficient domain knowledge for a specific domain
of applications to extract typical services and to design abstract test cases. Although the-
oretically application vendors could be responsible to design such a benchmark, a neutral
institution or the market place provider should be responsible for service modeling to avoid
benchmarks designed in advantage for specific applications within the market place.

If a new application should be deployed in a market place or energy labels should be pro-
vided for an existing application, the abstract test cases have to be concretized for this
application. Thus, during (2) service model binding, the transitions and activities of the
service model are bundled to sequences of application-specific user interface (UI) interac-
tions (e.g., the activity browsing inbox is bound to a click event on the button “inbox”).
The result is a set of concretized test cases for the AUT ready for execution. We are cur-
rently working on an automated approach that derives the app-specific benchmark from
the service model binding and generates the concretized benchmark code. As application
vendors or developers typically know their application best, they should be responsible
to deploy their application together with a test case binding in the market place to sup-
port comparison with competing applications (which requires trusting that vendors will
not realize dummy bindings causing less power consumption).

I Classically, a test case represents an execution of an application under test (AUT) in a well-defined context
comparing the expected with the execution result. However—in the context of this paper—a test case does not
compare expected and observed outputs, but is used to utilize the AUT for power consumption profiling.
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Once concrete test cases are available, they are executed during (3) profiling, resulting
in an energy model. This process step is described in more detail in Section 3. The
resulting energy model describes the energy behavior of the AUT in the context of the
specified use cases. The energy model can be considered as metadata defined relative to
the original service model (e.g., activities such as reading an email or sending an email are
annotated with power rates expressing the average power rate of the AUT when performing
these activities). The executable test cases from the previous activities should be usable to
perform this activity in an automated way. However, application vendors should be able
to investigate the results to identify potential for optimization of their applications.

Although the energy model is sufficient to express the AUT’s energy behavior, workloads
are required to predict the AUT’s power consumption at runtime. As we intend to compare
applications based on their round-the-clock energy behavior, it is insufficient to predict the
power consumption for individual activities. Instead, we need information on how often
and how long users intend to perform certain activities. Thus, during (4) usage modeling
the usage behavior of a certain user is described. The usage profile enriches the service
model with further metadata: activities are annotated with average durations (e.g., the
average time to browse mails in the inbox) and transitions are annotated with statistical
information (e.g., how often an email is written). We consider two different options to
construct a usage profile: First, application users can estimate their usage behavior by cre-
ating a profile manually. This process can be simplified by answering predefined questions
(e.g., “How often do you check your inbox per day?”’) whose answers are used to generate
the actual usage profile. The second possibility is to derive a usage profile by gathering all
necessary information automatically. This can be achieved by installing a special profiling
app which constantly monitors the user’s behavior. However, this approach requires that
users already have applications installed that fulfill services similar to the application they
are looking for, which might not always be the case. A solution for this problem would be
the provision of default usage profiles (e.g., “heavy” and “standard” email usage profiles).

After modeling an application-domain’s use cases as well as profiling its power consump-
tion on a specific mobile device and selecting or creating a usage profile, the gained model
and metadata can be combined to (5) estimate the power consumption of applications.
By exchanging or altering the usage data, the approximation can be adapted to other usage
scenarios. Moreover, for approximations for other mobile devices, or for other applica-
tions of the same domain the energy model can be exchanged as well. This way, the
approach allows for easy adaptation to other user, software and hardware contexts. This
final activity can be realized in a rather automated way; the users are only responsible to
specify queries against the market place’s database.

3 Investigating Power Consumption of Similar Android Applications

After presenting a process for energy labeling of mobile applications, we now focus on the
profiling activity which is a prerequisite for the entire process. We present our profiling
infrastructure that executes JUnit test cases on Android devices while profiling their power
consumption in parallel and apply it to a small email case study.
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Figure 2: Schematic profiling illustration.

3.1 Profiling Infrastructure

To profile applications’ power consumption for certain use cases, we follow the approach
illustrated in Figure 2: Test cases are deployed and started on a mobile device issued from
a test server. In parallel, power rates a profiled with a power meter bypassing the device’s
battery. On the test server, the measured power rates are associated with events logged
during the test case execution. This way, the power rates can be associated to individual
test runs and thus, to individual use cases. We decided to profile Android applications for
our experiments. Thus, in the following, we describe how we implemented the outlined
profiling infrastructure for Android. Although implementation details may differ, similar
infrastructures could be implemented for other platforms such as iOS or Windows Mobile.

To implement an Android profiling infrastructure, we decided to reuse and extend the
existing Android testing infrastructure provided by the Android SDK? and the Android
Development Tools (ADT) that extend the Android SDK for Eclipse.> The ADT allows
testing Android applications with an Android-specific extension of the JUnit framework.
Test cases can be implemented in Java on a desktop PC. Afterwards, the test cases are
compiled into an Android test application that is shipped and deployed via an USB con-
nection onto the device under test (DUT). On the DUT the test application instruments
the AUT and runs workloads by simulating UI interactions such as pressing buttons or
entering texts. Besides the execution of unit test cases on the AUT, the test application
is also able to access information from the device’s operating system services such as its
CPU utilization, its WiFi connection or battery status. Thus, in theory, the ADT test runner
would be sufficient to profile the power consumption of Android applications. However,
profiling the device’s power consumption via its built-in sensors introduces a probe effect
during testing (i.e., the device utilizes the hardware for the profiling as well). Even more
important is the fact that for all tested Android devices the refresh rates of the battery sen-
sors are too low. For many devices, new probes are only available every thirty seconds or
even just once in a minute, which is too slow for reasonable power consumption profiling,
as many activities on mobile devices usually last at most a few seconds (e.g., a network
communication or the rendering of an image to be displayed).

Zhttp://developer.android.com/sdk/ (visited in June 2012)
3http://developer.android.com/guide/developing/tools/adt.html (visited in June 2012)
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Thus, we extended the ADT testing infrastructure with support for external power con-
sumption profiling. JUnit test cases derived from the service model are deployed as a test
application on the DUT. During their execution, events (e.g., the beginning or termination
of the individual test cases) are logged. In parallel, an external power meter is used to pro-
file the DUT’s power consumption between its battery and the device itself. Afterwards,
the collected power rates and the logged events from the AUT are correlated on the test
server to compute the power consumption of the tested activities. To allow this correlation,
the system clock of the test server and the DUT are synchronized using the Network Time
Protocol (NTP) before starting the test sequence. The power consumption of the AUT is
computed by measuring the DUT power consumption without the application and only a
reasonable set of background services running (i.e., required OS services only), and af-
terwards, the device’s power consumption while executing the AUT. The AUT’s power
consumption can be assumed as being the difference between profiled base power con-
sumption and profiled power consumption when running the AUT. Although this might
not be always the case as a minimum set of OS services is running in parallel, we argue that
the computed power rates are sufficient for our process as we intend to compare the power
consumption rates of different applications relatively and are not interested in the most
possible precise measurements—as long as the results are sufficient to compare different
AUTSs. By executing the same test cases multiple times, variations of power consumption
measurements can be minimized and statistically eliminated. Although it is likely that
the event logging on the DUT might introduce some extra power consumption and thus, a
probe effect, our investigations showed that reasonable logging activity does not cause an
extra power consumption being high enough to influence our measurement results. Thus,
this probe effect can be considered as being too small to be relevant and can be ignored
for our measurements. As external power meter hardware we used a Yokogava WT210.
Anyhow, any other power meter that can be connected with a PC can be used instead.

3.2 An Email Client Case Study

To investigate whether or not our comparison process for mobile applications is generally
possible, we defined a simple case study to evaluate the general concerns of our approach.
Especially we were interested in answering the following research questions: Is power
consumption of mobile applications big enough to be measured with available measure-
ment hardware? Can services of the same application cause different power rates being
measurable? Can different applications providing similar services cause different amounts
of power consumption being measurable? To answer these questions we defined a few
email client use cases, general enough to be executed on different email client apps. Each
of these use cases relates to a central email client service. The defined use cases for our
investigation are: (1) browsing an email account’s inbox and checking for new mails, (2)
reading an email, (3) opening and viewing an attachment, and (4) executing a client’s
background service that is responsible to check the email account for new mails while the
user is using other apps or the device is running in a standby mode. To evaluate these
use cases for different Android applications, we decided to investigate two different email
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Use case AUT DIW] s, [W] tlseq s [sed]
Check inbox K-9 Mail 0.356  0.022 7.96 0.06

MailDroid  0.433 0.023  10.40 0.14
Read mail K-9 Mail 0.259  0.019 16.01 0.55

MailDroid 0.338  0.012 1791 0.04
Open attachment K-9 Mail 0.286  0.017 14.06 0.54
MailDroid 0420  0.031 20.71 0.13
Background service K-9 Mail 0.037 0.011  10.00 0.00
MailDroid 0.152  0.029  10.00 0.01

Table 1: Average power consumption P, corrected sample standard deviation s, average execution
time ¢, and corrected sample standard deviation s; for different use cases, each profiled five times
for both apps.

clients available for free via the Android market place. The first application we chose
is the popular K-9 Mail app* (version 4.107) that has already been downloaded by more
than 1,000,000 Android users. As a second application we decided for the MailDroid app’
(version 2.31), another popular email client installed more than 500,000 times.

3.3 Profiling Results

The above-mentioned use cases have been implemented for both email clients and have
been tested on an ASUS Transformer TF101 tablet PC with Android version 3.2.1. For
both applications the same email account was used to execute the test cases. All four use
cases were profiled five times for each AUT. We started the profiling by using a fully
charged battery and executed the test cases for both applications alternately to reduce in-
fluences on the measurements caused by a more or less discharged battery. Before each
test run we profiled the TF101’s base consumption for ten seconds with a minimum of run-
ning background services (e.g., the network and keyboard service) and the LCD brightness
being set onto 50%. The WiFi connection has been set enabled for the required Internet
communication. The power rates have been profiled using a Yokogava WT210 power
meter with a probe frequency of 4H z.

Profiling the tablet’s base consumption resulted in an average consumption of 2.694W
with a standard deviation being less than 0.0011/. For the power consumption profiling of
the executed use cases, this base consumption has been subtracted from the profiled power
rates, assuming that all additional power consumption during the test runs was caused by
the currently executed AUT.

Table 1 shows the profiling results. Except for the profiling of the background service, all
use cases resulted in average power rates having standard deviations of less than 10%. The
major reason for the background’s service higher standard deviation may be the relative
short profiling time for such a long running service. As can be seen, different use cases

“http://code.google.com/p/k9mail/ (visited in June 2012)
Shttp://groups.google.com/group/maildroid/ (visited in June 2012)
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of the same application caused different amounts of power consumption. The most power
was consumed by activities requiring communication hardware (i.e., WiFi) as by the check
inbox use case. Therefore, also the assumption that application’s power consumption can
vary for different provided services seems to be correct. Another observation is that all
use cases caused higher power consumption rates when executed with the MailDroid ap-
plication. K-9 Mail outperforms MailDroid in all specified use cases consuming between
18% (check inbox) and 75% (background service) less power than MailDroid. Although
differences in power consumption are only deci-Watts, a t-test showed that the observed
differences can be considered as being significant. Thus, it can be assumed that the differ-
ences have not been caused by measurement errors. One explanation for the higher power
consumption caused by the MailDroid application is that we profiled its trial version where
an advertisement banner is display in each view of its UL. Loading the banner from the
Internet could cause the additional power costs. Similar observations have already been
made by Pathak et al [PHZ12], showing that advertisement can cause up to 75% of app’s
total power consumption! An investigation if the commercial version of MailDroid be-
haves better than the free version remains a target for future work.

3.4 Threats to Validity and Limitations

Although the measurements presented above generally support our research questions,
some threats to validity in the context of these measurements should be considered which
are shortly discussed in the following. We differentiate threats related to the profiling
infrastructure and to the proposed energy labeling process in general.

3.4.1 Profiling

Charging via USB power connection As mentioned above, the test cases are executed
on the DUT via a USB connection from a test runner PC. Unfortunately, on Android
devices a USB connection will automatically cause battery charging which cannot be dis-
abled via software settings. As we need the USB connection to run our test cases, we
cannot unplug the cable from the device. Cutting the power wire of the USB cable is not
working either as the power wire is also required to identify the device from the PC and
vice versa. Thus, we ignored the battery charging via USB connection during our test runs.
We measured the charging rate of the DUT’s battery before running our test cases and mea-
sured a constant charging rate of 0.6WW. Thus, the measured base power consumption of
the DUT can be considered as being about 0.6/ too low. Although the precise values
of our measurements are incorrect, we argue that the results are still sufficient to show
that the MailDroid app consumes more energy than the K-9 Mail competitor, because both
tests ran under the same circumstances and are therefore comparable. For future test runs
we plan to profile the USB charging rate in parallel to the battery’s power rate of the DUT.

Imprecise measurements Measurements were done with a probe frequency of 4H z.
Thus, power rate peaks lasting only 250ms or shorter may not be profiled appropriately.
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However, we argue that for our coarse-grained test scenarios the probe frequency is suffi-
cient. As triggered events such as WiFi communication typically last longer than 250ms.
The standard deviation of our results shows that it is unlikely that we missed many power
peaks in one of the test runs as otherwise the computed standard deviation of the measured
values should be higher. Anyhow, our approach is currently not able to track short term
events such as high CPU utilization for a few milliseconds only. For future work we plan
to use more fine-grained probe frequencies instead. Another concern for the results’ qual-
ity is that each individual test run was only profiled five times which can be considered as
too less for significant statistical results. However, we argue that the small measurements
variances suggest stable measurements over multiple test runs. Based on the variances we
computed the minimal number of necessary measurements resulting in five runs for all our
measurements. Thus, our number of measurements can be assumed as only just sufficient.
As a consequence, we plan further test runs for future work to confirm our findings.

Generalizability for other mobile devices Our measurements were performed for one
specific Android device, an Asus Transformer TF101. It is very likely that other mobile
devices from other vendors will behave differently and have different power rates while
executing the same applications and use cases. Thus, the question whether the same dif-
ferences between K-9 Mail and MailDroid will occur on other mobile devices remains a
target for future work. We assume that similar phenomena will be observable, but the total
power rates as well as the relative differences between the apps may vary on other devices.

Small power consumption differences for similar use cases of different applications
Although we showed that the two profiled applications consume different amounts of
power, the differences are rather low (between 0.077W and 0.152W for our four use
cases). However, we argue that even these small differences can be important for long-run
scenarios. Especially the differences of the background services’ power consumption that
may run 24/7 can be important (e.g., according to our measurements when using Mail-
Droid instead of K-9 Mail as email client, the background service will consume 2.76W h
additional energy every day, more than 10% of the TF101’s total battery capacity!).

Influences from helper applications In some cases, Android applications delegate ser-
vices to other applications via so-called Intents. For example, in the open attachment
example the attachment is opened by another application, depending on the file type (e.g.,
an image or PDF viewer). Thus, the power consumption of this use case depends on the
application to open the attachment as well. As in our scenario we executed all test cases
on the same DUT, the same applications were used for attachment viewing. However, in
more heterogeneous scenarios such application interference should be considered as well.

3.4.2 Energy Labeling Process

Coarse-grained use cases Although our measurements show that different use cases of
the same application as well as the same use cases executed on different applications can
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cause different power rates, the results presented above are rather coarse-grained. Each
profiled use case consists of a complete Ul interaction beginning with starting the appli-
cation, clicking through its menus and finally performing an action (e.g., checking the
inbox). For future work we plan to define more fine-grained test cases that perform sim-
ilar tasks with different parameters (e.g., sending emails of different sizes) to get a better
understanding on how these parameters can influence the use cases’ power consumption.

How to compare applications with limited similarity Another question that should be
raised in context of the proposed energy labeling process is the question how applications
can be compared that provide a set of similar services but other individual services as
well. Of course, only the services provided by both applications can be considered for
comparison. Thus, if an application A provides additional services not provided by a
compared application B, these services are considered as not existing. The easiest way to
reflect this during power consumption estimation is to set their usage rate in the applied
usage profile to zero—meaning they will never be used after the app’s installation. Another
related problem are apps being totally different from all other applications available. In this
case a label comparing the app w.r.t. similar application would not be possible. However, it
is still possible to compare applications from similar genres (e.g., games with other games,
having different service models and usage profiles).

Similarity in application workflow Binding test cases for different apps to the same
service model requires that their workflow is similar enough to allow the abstraction of
their common behavior in a service model. This might be the case for the discussed email
example as well as other standard use cases (e.g., web browsers or new feeders). However,
in other scenarios this might be more complicated. We plan to investigate the limitations
of a common service model in further case studies and considering optional or alternative
transitions within future versions of our proposed service models.

Combinatorial explosion of possible configurations Of course, the separation of the
power consumption into an app-specific energy model and a user-specific usage profile
on a highly heterogeneous platform like Android with hundreds of different devices and
millions of apps available leads to a combinatorial explosion when all different settings
shall be profiled and stored in energy models. Future work will show how different power
consumption of individual apps will behave on different mobile devices. As we are only
interested in relative results comparing different applications, it might be sufficient to in-
vestigate a small subset of representative devices to compute appropriate energy labels
(expressing only relative power behavior!) in all realistic usage scenarios.

Power rates as comparison criterion As profiling results show, different apps do not
only differ in their average power rates but also in their average execution time for different
use cases. This raises the question whether or not average power rates are right comparison
criterion. For short term use cases such as reading a mail or opening an attachment also
a use case’s total power consumption would be an appropriate criterion. However, for
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long running scenarios (i.e., background services) power rates are more appropriate as
execution time is irrelevant for these cases. An optimal solution could be a comparison
considering both apps’ long run power consumption as well as execution time for use cases
involving active user interaction.

3.5 Power Profiling for Large Developer Communities

A central question that arises once the proposed process should be used in an ecosystem
where many different stakeholders develop applications, share them in a central repository
and compete against each other is whether it is possible to adapt the process without requir-
ing each developer having his own profiling infrastructure, as power metering hardware is
still rather expensive. We see three different solutions for this profiling problem:

Better built-in battery sensors Future mobile devices might get better built-in battery
sensors that may be sufficient for appropriate power consumption profiling. As power con-
sumption is a major concern, it is likely to expect that hardware vendors might consider
the introduction of better battery sensors. Once built-in sensors provide probe frequencies
of 1H z and higher, the external measurement hardware becomes obsolete. However, this
solution depends on the decisions of hardware vendors and not of the software develop-
ers aiming to build more energy-efficient mobile applications. Furthermore, the usage of
built-in sensors might introduce further probe effects during the test runs that have to be
considered during energy modeling.

Power profiling as a cloud service Besides waiting for better built-in sensors it would
be possible to provide an existing power metering infrastructure as a Web or cloud ser-
vice in a way that it could be reused remotely by other software developers. However,
this solution comes together with some drawbacks. First, it requires a Web service with
sufficient resources for all developers intending in power testing their applications. Sec-
ond, using remote testing, developers are not able to control that the DUT performs in the
way they expect it to do. They can introspect the devices status via screen-capturing tools
or similar solutions but they are not able to investigate the DUT’s physical environment
(e.g., whether or not the mobile is in an upright position or the current lighting of the
environment).

Application of power consumption models Another alternative solution would be to
use mathematical models that approximate the device’s power consumption based on hard-
ware utilization information. Related work shows that building such models based on con-
sumption profiling training data can result in systems appropriate enough to approximate
the device’s power consumption with errors of less than 5% [ZTQ*10, KB11, ZGFC11].
These models could be used to replace the external measurement hardware. Although this
would lead to less accurate results, they could be sufficient to compare different applica-
tions’ average power consumption.
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4 Related Work

Besides our approach, several other works exist that allow for the profiling and estimation
of mobile devices’ power consumption. However, most of these approaches focus on
power consumption of individual hardware components whereas our approach focuses on
the comparison of different software applications’ power consumption.

In [PANS11] Palit et al. present a methodology to profile average power consumption of
mobile applications. Their testing infrastructure can be considered as similar to our ap-
proach, consisting of a test server, a mobile device under test and an external power meter.
However, they focus on profiling average power consumption rates for typical application
use cases executed on different mobile platforms (e.g., Android and Blackberry). Our ap-
proach in contrast targets to compare the power consumption of similar applications on
the same mobile devices.

Carroll et al. present an approach to profile an individual smart phone’s power consump-
tion in [CH10]. They execute different use cases on the mobile such as playing music,
sending emails or phone calls and profile the device’s power consumption using external
power metering hardware in parallel. In contrast to our approach, Carroll et al. try to es-
timate the consumption impact of individual hardware components whereas our approach
estimates the impact of different software applications.

Kjergaard and Bluck [KB11] compute mathematical power consumption models for smart
phones. Their PowerProf tool executes multiple benchmarks on Nokia Symbian phones,
each utilizing different hardware devices such as CPU, display, and WiFi. In parallel, the
tool profiles the device’s power consumption by using the software interface of the battery
sensors. A genetic algorithm is used to transform profiling data into a mathematical model
predicting the phone’s power consumption based on data on its hardware utilization. In
contrast to our approach, Kjergaard und Bluck focus on hardware profiling and a model
to predict the hardware’s power consumption based on utilization. Thus, to predict power
consumption of software applications their approach requires a profiling of the hardware
utilization cause by the AUT beforehand.

A similar approach to Kj@rgaard and Bluck has been developed by Zhao et al. [ZGFC11].
The power consumption of Android devices is profiled via their software-based battery
interface and used to compute linear regression equations expressing the devices power
consumption based on its hardware components’ utilization.

Another software-interface based profiling approach has been implemented by Rice and
Hay [RH10]. Test cases are executed via a test server and the profiling results are traced by
using the phone’s logging system. In contrast to our work, Rice and Hey focus on profiling
the power consumption caused by the phone’s WiFi communication.

Zhang et al. developed a profiling tool [ZTQ™10] that can be considered as rather sim-
ilar to our approach. Test cases are executed on Android devices based on a test server,
whereby the device’s power consumption is profiled using external measurement hard-
ware. The results are used to compute linear regression equations similar to Zhao et al.
The equation system is used as a basis for an Android application called PowerTutor. Pow-
erTutor is able to approximate the power consumption for applications currently executed
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on the device based on their CPU time and the device’s hardware utilization. Although
the approach can be used to estimate the current device’s power consumption, it does
not allow for an offline estimation of software applications’ average power consumption
where usage profiles can be varied to adapt power consumption to different usage scenar-
ios. However, the PowerTutor tool would be the perfect candidate to replace our external
power metering with a software-based approximation as discussed in Section 3.5.

Pathak et al. [PHZ" 11, PHZ12] propose another approach for power consumption profil-
ing of mobile devices. AUTs are instrumented with additional logging code for system
call tracing. Afterwards the applications are deployed on the DUT and typical usage sce-
narios (e.g., Internet browsing or chess gaming) are executed. The recorded system traces
are used to compute the application’s power consumption by replaying the traces on a
finite state machine model that represents the device’s hardware components and their
different power states. Pathak et al. use their approach to investigate several Android ap-
plications’ power consumption and show that network communication and input/output
operations cause large amounts of their total power consumption. In contrast to our ap-
proach, for power consumption approximation Pathak et al. use system traces and a power
consumption model of their DUT. Thus, they do not profile the applications’ real power
consumption but approximate them from power consumption models created beforehand.
Furthermore, they investigate the power consumption of some mobile applications, but do
not propose an approach to systematically compare mobile applications providing similar
services.

Besides power profiling of mobile applications, further approaches exist that focus on
power consumption of laptops, desktop PCs or server systems. Rivoire et al. developed
the JouleSort benchmark for desktop applications as well as server systems [RSRKO07,
Riv08]. Based on classical sorting benchmarks the system under test is evaluated based
on the elements sorted per Joule instead of performance and throughput. In contrast to our
approach JouleSort focuses on desktop applications. Furthermore, the approach focuses
on sorting algorithms whereby our approach aims to provide a benchmark infrastructure
for arbitrary kinds of mobile applications.

In [LLO6] Lafond et al. propose an approach that profiles the power consumption of in-
dividual software instructions. A large subset of all Java bytecode instructions is profiled
and used as a basis for application’s power consumption predictions. A similar approach
has been proposed by Seo et al. [SMMO07, SEMMOS]. Although both approaches focus
on applications’ power consumption estimation, they focus on another level of abstraction
than our approach. Our approach focuses on coarse-grained profiling of activities where
measurement errors are likely to be rather small in contrast to profiling errors for individ-
ual instructions. Furthermore, our approach considers varying usage behavior for different
usage contexts which is not supported by Lafond and Seo.
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5 Conclusion and Future Work

In this paper we proposed a process for comparing mobile applications’ power consump-
tion consisting of five steps. Use cases are modeled abstractly for a certain application
domain. Afterwards, these use cases are refined to concrete test cases for each application
under test. Execution and profiling of the test cases results in an energy model which to-
gether with a usage profile can be used to approximate an app’s power consumption as well
as to compute energy grades comparing similar apps w.r.t. their power consumption. We
have shown, how Android apps can be profiled by extending the Android Development
Tools with external power metering hardware and have profiled the power consumption
of two Android apps (K-9 Mail and MailDroid) while executing the same test cases on
both of them. We demonstrated that similar apps can indeed consume different amounts
of energy, which is especially important when running as a background service as this
use case can be assumed to be the most important impact factor for the apps’ total power
consumption in a 24/7 service scenario.

For future work we plan to improve our profiling infrastructure as well as performing more
detailed case studies (e.g., for mail clients, news readers and web browsers). Besides, we
plan to address the threats to validity as discussed in Section 3.4. We intend to imple-
ment the complete energy labeling process presented in this paper, resulting in a reposi-
tory where users are able to compare different apps based on their power consumption in
the context of personalized usage scenarios. We also plan to evaluate how energy labels
influence users in their decisions which apps to install on their mobile devices. Another in-
teresting task is to adapt the process to compare different versions of the same application.
Thereby, the same process could be used for energy regression testing and optimization
of specific mobile applications. Finally, based on our profiling results we are considering
strategies or implementation patterns that can be identified for the development of future,
more energy-efficient mobile applications.

Acknowledgements

This research has been funded within the project ZESSY #080951806, by the European
Social Fund (ESF) and Federal State of Saxony and within the Collaborative Research
Center 912 (HAEC), funded by the German Research Foundation (DFG). Furthermore,
we thank Waltenegus Dargie and his team for providing the required power metering hard-
ware, Doreen Fiss for her assistance to statistically investigate our measurement results and
the reviewers of this paper for their very helpful and encouraging remarks.

References

[CH10] A. Carroll and G. Heiser. An analysis of power consumption in a smartphone. In
Proceedings of the 2010 USENIX annual technicalconference, pages 21-21, Berkeley,



This is a preprint version of the publication "Energy Labels for Mobile Applications”,
In: Proceedings of the First Workshop for the Development of Energy-aware Software (EEbS 2012),
Lecture Notes in Informatics, Vol. 208, Gesellschaft fir Informatik, Bonn, 2012, pp. 412-425.

[KB11]

[LLO6]

[PANS11]

[PHZ11]

[PHZ12]

[RH10]

[Riv08]

[RSRKO7]

[SEMMOS]

[SMMO7]

[ZGFC11]

[ZTQ™ 10]

CA, 2010. Usenix Association.

Mikkel Baun Kj@rgaard and Henrik Bluck. Unsupervised Power Profiling for Mobile
Devices. In Proceedings of the 8th International Conference on Mobile and Ubiquitous
Systems: Computing, Networking and Services (Mobiquitous 2011), Berlin / Heidel-
berg, 2011. Springer.

Sébastien Lafond and Johan Lilius. An Energy Consumption Model for an Embedded
Java Virtual Machine. In Architecture of Computing Systems - ARCS 2006, volume
3894 of Lecture Notes in Computer Science, pages 311-325. Springer, Berlin / Heidel-
berg, 2006.

R. Palit, R. Arya, K. Naik, and A. Singh. Selection and Execution of User Level Test
Cases for Energy Cost Evaluation of Smartphones. In Proceeding of the 6th interna-
tional workshop on Automation of software test, pages 84-90, New York, 2011. ACM.

A. Pathak, Y. C. Hu, M. Zhang, P. Bahl, and Y. M. Wang. Fine-grained power modeling
for smartphones using system call tracing. In Proceedings of the sixth conference on
Computer systems, pages 153-168, New York, 2011. ACM.

A. Pathak, Y. C. Hu, and M. Zhang. Where is the energy spent inside my app?: fine
grained energy accounting on smartphones with Eprof. In Proceedings of the 7th ACM
european conference on Computer Systems, pages 29-42, New York, 2012.

A. Rice and S. Hay. Decomposing power measurements for mobile devices. In IEEE In-
ternational Conference on Pervasive Computing and Communications (PerCom), pages
70-78, Los Alamitos, CA, 2010. IEEE Computer Society Press.

Suzanne Marion Rivoire. Models and Metrics for Energy-Efficient Computer Systems.
PhD thesis, Stanford University, 2008.

Suzanne Rivoire, Mehul A. Shah, Parthasarathy Ranganathan, and Christos Kozyrakis.
JouleSort: a balanced energy-efficiency benchmark. In Proceedings of the 2007 ACM
SIGMOD international conference on Management of data (SIGMOD °07), pages 365—
376, New York, 2007. ACM.

Chiyoung Seo, George Edwards, Sam Malek, and Nenad Medvidovic. A Framework
for Estimating the Impact of a Distributed Software System’s Architectural Style on its
Energy Consumption. In Proceedings of the The Working IEEE/IFIP Conference on
Software Architecture (WICSA 2008), pages 277-280, Los Alamitos, CA, 2008. IEEE
Computer Society Press.

Chiyoung Seo, Sam Malek, and Nenad Medvidovic. An Energy Consumption Frame-
work for Distributed Java-Based Systems. In Proceedings of the twenty-second
IEEE/ACM international conference on Automated Software Engineering, New York,
2007. ACM.

X.Zhao, Y. Guo, Q. Feng, and X. Chen. A System Context-Aware Approach for Battery
Lifetime Prediction in Smart Phones, 2011.

L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R.P. Dick, Z.M. Mao, and L. Yang. Accurate
online power estimation and automatic battery behavior based power model generation
for smartphones. In Proceedings of the eighth IEEE/ACM/IFIP international confer-
ence on Hardware/software codesign and system synthesis, pages 105-114, New York,
2010. ACM.





